jueves, 11 septiembre, 2025
jueves, 11 septiembre, 2025

positividad tóxica ¡Tu obsesión por estar siempre bien te está arruinando la vida! | BIENESTAR

El horóscopo de hoy, jueves 11 de septiembre de 2025: predicciones diarias con la Luna Tauro favorable para Cáncer

Una académica israelo-rusa secuestrada en 2023 es liberada en Irak

Meta ocultó estudios sobre seguridad infantil en plataformas de realidad virtual, denuncian exempleados

Gatear, balbucear o caminar: qué esperar del desarrollo de tu bebé mes a mes en el primer año | HOGAR-FAMILIA

Australia desplegará una flota de drones de ataque submarinos

“Tal vez fuimos ingenuos, pero encontramos esperanza en medio de la pena”: Jaime Chincha y el último adiós de sus amigos | TVMAS

El horóscopo de hoy, miércoles 10 de septiembre de 2025: predicciones diarias con la Luna en Capricornio favorable para Leo

OpenAI respalda una película animada con IA para debutar en Cannes

Apple presenta el iPhone 17 Air en medio de la carrera por la IA



Científicos han desarrollado un modelo de aprendizaje automático que predice posibles sistemas planetarios con planetas similares a la Tierra, para acelerar la búsqueda futura de gemelos de nuestro mundo.

La búsqueda de exoplanetas similares a la Tierra (planetas que orbitan estrellas distintas a nuestro Sol) es un tema central en la investigación planetaria actual, ya que es muy probable que allí se encuentre vida extraterrestre. Investigadores de la Universidad de Berna han desarrollado un innovador modelo de aprendizaje automático que identifica sistemas planetarios que podrían albergar planetas similares a la Tierra. El estudio acaba de publicarse en la revista Astronomy & Astrophysics.

MIRA: ¿Y la Luna? Nominado por Trump para dirigir la NASA “priorizará” misión a Marte

El modelo de Berna

Un modelo de aprendizaje automático es una herramienta estadística que se entrena con datos para reconocer ciertos tipos de patrones y realizar predicciones. la investigadora postdoctoral Jeanne Davoult, autora principal del estudio, explica en un comunicado: “Nuestro modelo se basa en un algoritmo que desarrollé y que fue entrenado para reconocer y clasificar sistemas planetarios que albergan planetas similares a la Tierra”.

El modelo se basa en estudios previos para inferir una correlación entre la presencia o ausencia de un planeta similar a la Tierra y las propiedades de su sistema.

El algoritmo se entrenó y probó con datos del llamado Modelo de Berna de Formación y Evolución Planetaria. “El Modelo de Berna permite obtener información sobre cómo se formaron los planetas, cómo han evolucionado y qué tipos de planetas se desarrollan bajo ciertas condiciones en un disco protoplanetario”, explica el coautor, el doctor Yann Alibert.

MIRA: El programa de verificación de Meta dejará de funcionar en EEUU a partir del lunes

Desde 2003, el Modelo de Berna se ha desarrollado continuamente en la Universidad de Berna. “El Modelo de Bern es uno de los pocos modelos a nivel mundial que ofrece una riqueza tan amplia de procesos físicos interrelacionados y permite realizar un estudio como el actual”, continúa Alibert.

99% de precisión del nuevo modelo

El algoritmo del nuevo modelo de aprendizaje automático se entrenó y probó utilizando datos de sistemas planetarios sintéticos del Modelo de Berna. “Los resultados son impresionantes: el algoritmo alcanza valores de precisión de hasta 0,99, lo que significa que el 99 % de los sistemas identificados por el modelo de aprendizaje automático contienen al menos un planeta similar a la Tierra”, afirma Davoult.

El modelo se aplicó posteriormente a sistemas planetarios observados. “El modelo identificó 44 sistemas con alta probabilidad de albergar planetas similares a la Tierra no detectados. Un estudio posterior confirmó la posibilidad teórica de que estos sistemas alberguen un planeta similar a la Tierra”, explica Davoult.



Source link